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Abstract. In light of recent works exploring automated pathological di-
agnosis, studies have also shown that medical text reports can be gener-
ated with varying levels of efficacy. Brain diffusion-weighted MRI (DWI)
has been used for the diagnosis of ischaemia in which brain death can
follow in immediate hours. It is therefore of the utmost importance to
obtain ischaemic brain diagnosis as soon as possible in a clinical setting.
Previous studies have shown that MRI acquisition can be accelerated us-
ing variable-density Cartesian undersampling methods. In this study, we
propose an accelerated DWI acquisition pipeline for the purpose of gen-
erating text reports containing diagnostic information. We demonstrate
that we can learn a semantic-preserving latent space for minor as well
as extremely undersampled MR images capable of achieving promising
results on a diagnostic report generation task.

1 Introduction

Patients that have suffered the symptoms of a stroke have a very short time
frame in which to be effectively treated; therefore, it is imperative that radiolo-
gists determine the cause of the symptoms in order to provide the appropriate
treatment. The majority of strokes are caused by cerebral ischaemia, which can
be characterised as reduced blood flow to the brain, causing poor oxygenation
that can lead to permanent brain cell death. Both computed tomography (CT)
and multi-modal magnetic resonance imaging (MRI) are effective in assessing
brain ischaemia, but diffusion-weighted MRI (DWI) is particularly advantageous
as it provides highest sensitivity to early ischaemic lesions. In comparison to CT,
typical DWI has a much longer acquisition time which additionally makes the
scans more susceptible to patient motion and subsequent unwanted imaging
artefacts. Furthermore, requiring patients to lay dormant without any motion
for long periods of time may lead to discomfort. A well-explored approach for
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accelerating scan-time is through undersampling whereby fewer scanner mea-
surements are taken, violating the Nyquist-Shannon sampling theorem and thus
introducing aliasing artefacts into the reconstruction of the image. Several stud-
ies are focused on the dealiasing of such images, validating undersampled MRI
as an accepted acceleration technique [17, 14, 13, 4, 27, 27, 5, 15].

Assessing the quality of the MR image reconstruction is typically focused
on calculating similarity metrics such as peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index between the dealiased reconstruction and the
fully-sampled image [20]. This does not, however, guarantee the retention of
pathological features necessary for a diagnosis, especially at more aggressive
acceleration rates. Therefore, a complimentary way of reviewing extremely ac-
celerated images is through the use of real-time diagnostic tasks such as segmen-
tation and classification [16]. In our study, we explore the automated generation
of radiological text reports containing relevant diagnostic and contextual infor-
mation. The logging of diagnostic reports generated by qualified radiologists is
standard hospital protocol. As a result, datasets for studies involving automated
text report generation can be acquired directly from hospital archives. In con-
trast, segmentation and classification tasks require non-standard time-consuming
manual annotations. In addition, DWI diagnostic reports typically detail con-
textual information as well as the presence/absence of an acute lesion, such as
anatomical location and severity of the lesion, and being able to auto-generate
them will additionally expedite the process of identifying and documenting acute
ischaemia.

To this end we have developed a pipeline that 1) learns an implicit context-
preserving manifold of brain DWIs that captures both spatial and pathological
information, 2) enforces a latent code for the accelerated DWIs that performs in
a similar fashion to the fully-sampled images 3) utilises these accelerated brain
DWI image representations to learn to automatically generate reports using
a recurrent neural network. To our knowledge, this is the first demonstration
of deep latent space learning for the retention of semantic feature information
required for accelerated report generation, and the first demonstration of learning
to auto-generate reports from brain DWI images.

2 Previous work

Latent space learning of accelerated MRI Previous work has shown the
use of deep latent space learning for performing tasks such as segmentation and
reconstruction in the context accelerated MRI [27, 16]. Accelerated MRI data
acquisition is centred around the ability to reconstruct image data in a typically
ill-conditioned inverse regression problem. However, certain tasks will only re-
quire certain parts of information from the sensor space, called ‘k-space’. For
example, approximate motion estimation from cardiac cine MRI can be per-
formed with acceleration rates of 51.2 [17]. [16] shows that cardiac segmentation
can be performed by a single line acquisition in k-space. Inspired by this we
explore the use of deep latent space learning for learning diagnostically-relevant
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contextual image embeddings. Whilst [16] shows that deep latent space learn-
ing provides a manifold that can be robust to different undersampling patterns,
they also show that at extreme acceleration rates, deep latent space learning can
outperform conventional approaches.

Radiology report generation Learning to automate report generation
for radiological images has thus far been heavily influenced by image caption-
ing models formulated as an encoder-decoder machine translation problem. In
image captioning, image representations are extracted from a pre-trained con-
volutional neural network (the encoder) and passed as inputs alongside captions
to a sequence-learning decoder by, for instance, mapping the word and image
representations to the same feature space [10, 19]. Such a framework was used
by [18] to predict structured medical subject heading (MeSH R©) annotations for
chest X-ray images.

More recently, learning to attend to spatial visual features has been shown
to be effective in image captioning [23] and medical report generation [26, 7, 24,
25]. Using structured reports in a dual-attention framework, Zhang et al.[26]
were able to improve features used for classifying histopathology images. The
co-attention network of Jing et al. [7] is fed visual as well as semantic features in
order to provide high-level semantic information to the text-generation task. Xue
et al.[24] break down the task of report generation into subtasks of generating
one sentence at a time where each succeeding sentence is conditioned on image
features and previous sentences. Yuan et al.[25] also demonstrate the benefit of
learning radiology-related features from an initial classification task and go a
step further by learning features from multi-view 2-D images (chest X-rays) by
introducing a cross-view consistency loss.

The accelerated acquisition of brain DWI has been previously studied in
the context of image reconstruction [11, 22, 21, 2]. However, in our study, we
explore its use for automated text report generation. We demonstrate how the
latent space learned by the accelerated reconstruction network captures both
spatial semantic and pathology information required in order to learn to generate
reports.

3 Method

Our study accelerates DWI acquisition through aggressive variable-density Carte-
sian undersampling as has been studied in several previous works such as [17,
16]. In our study, we start with attempting a zero-fill reconstruction whereby
the lines in k-spaces that are not acquired are filled with zeros. An example
of a fully sampled image and a corresponding undersampled, zero-filled image
reconstruction is shown in Figure 2. For all acceleration rates, we always sample
the two most central lines in k-space whilst the other lines are acquired follow-
ing a Gaussian distribution centred at the point of highest energy in k-space.
During training, undersampling masks are generated on the fly and images are
also augmented with additional rotations and translations.
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Fig. 1. An autoencoder is trained to reconstruct the fully-sampled image through an L2
loss. The latent space is conditioned to encode pathological information by performing
a classification of ischaemia, trained with a binary cross-entropy loss. The latent space
encoding learned at the bottleneck is used as a training target for the encoding branch
which only sees the accelerated image.

3.1 Latent space learning

In our approach, we use an autoencoder network that takes as input the original
fully-sampled DWI brain MRI. The purpose of this is to learn a latent space
at the bottleneck that contains spatial and contextual information that may be
useful for a text report generator. In particular, we manipulate the embedding
manifold toward one more suitable for text report generation by introducing
an ischaemia-classification loss as a regulariser. This loss can be summarised by
equation (1) where an Adam optimiser with learning rate 1.0 × 10−5, β1 = 0.9
and β2 = 0.999 was used.

L(x, y) = ||D(E(x))− x||22 − γ(y logC(E(x)) + (1− y) log(1− C(E(x)))), (1)

where E, D and C are the encoder, decoder and classifier networks (from
figure 1) respectively, x is our fully-sampled image, y is a binary classification
label for ischaemia and γ = 8000. We can measure the performance of the
latent space learnt as a combination of reconstruction error (in particular of the
ischaemia) and of the classification error.

Along side this, we use a structurally-identical encoding branch to learn a
latent space for the accelerated MRI acquisition. We use the approach of per-
forming a zero-fill reconstruction whereby after convolutional layers can be used
to identify aliasing artefacts as directly relevant image features themselves. The
latent space is trained against the bottleneck of the autoencoder using an L2
loss and another Adam optimizer with the same optimizer parameters. This is
summarised in Figure 1 and in equation (2). Note, for each acceleration rate
used in our study, a unique encoder is learned to generate the required latent
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space. An advantage of deep latent space learning is that we can train the specific
encoder associated with different acceleration rates towards the same manifold
which avoids the need for retraining of the text report generator model.

L(x, xacc) = ||E(x)− xacc||22, (2)

where xacc is our accelerated, aliased image and Eacc is our encoding branch
for the accelerated images.

Fig. 2. Left to right: (1) An example of a brain with ischaemia (2) The correspond-
ing x16 accelerated image is zero-fill reconstructed from k-space using a 2D Fourier
Transform. Note that this image is infected with heavy aliasing artefacts. (3) A pro-
jection of the first two principle components in a PCA analysis of the latent space.
Some clustering can be seen (4) a t-SNE projection of the latent space showing clear
clustering.
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Fig. 3. Clinical report generation model from accelerated image latent space embed-
dings.

3.2 Report generation model

We use a report generation model based on [3] where the report word sequence
is modelled using the Long Short-Term Memory (LSTM)[6], and conditioned
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on image embeddings at each time step through concatenation at the input to
the LSTM. At each time step, the input, output and forget gates control how
much of the previous time steps is propagated through to the output. For an
input embedding sequence {x1, . . . , xn} where xi ∈ RD, the internal hidden state
ht ∈ Rh and memory state mt ∈ Rm are updated as follows:

ht = ft � ht−1 + it � tanh(W (hx)xt +W (hm)mt−1)

mt = ot � tanh(ht)
(3)

where xt ∈ RD is the concatenation of the latent space image embedding
and word embedding at time step t, W (hx) and W (hm) are the trainable weight
parameters, and it, ot and ft are the input, output and forget gates respectively.
The model architecture is illustrated in Figure 3. We additionally add Dropout
layers after image and word embeddings to force the model to condition on both
thus regularising training.

4 Experiments

The Data The dataset consists of 1226 DWI scans and corresponding radio-
logical reports of acute stroke patients. All the images and reports were fully
anonymised and ethical approval was granted by Imperial College Joint Regula-
tory Office. The scans were pre-processed according to the steps outlined in [1]:
images were resampled into uniform pixel size of 1.6×1.6mm, and pixel intensi-
ties were normalised to zero mean and unit variance. The number of slices per
image varies between 7 and 52, and the slice dimensions are 128×128.

Each report contains between 1 and 2 sentences summarising the presence
or absence of the pathology, a visual description, and its location within the
brain. In addition, each exam is assigned a diagnostic label as part of hospital
protocol: 54% were diagnosed ‘no acute infarct’, 46% were diagnosed ‘acute
infarct’. The remaining, which made up a total of <1% and included diagnoses
such as ‘unknown’, ‘haematoma’, ‘tumour’, were removed for the purpose of
training. Processing was done on the reports to remove words outside the 99th
percentile, exams with empty reports were removed, leaving a total of 1104
exams, total vocab length 1021, mean words per exam 10.8, std. 6.3.

In order to simplify the problem, we created a 2D dataset of acute and
non-acute (normal) slices from these images. For the acute set, we used the
brain ischemia segmentation network developed by Chen et al.[1] to segment the
images labelled with acute ischemia, thresholded at 0.8, and selected slices where
the total area of ischemia was >10 pixels. For the normal set, we sampled slices
from the non-acute labelled images according to the same axial plane distribution
as the acute set.

Experimental settings Reports were padded with ‘start’ and ‘end’ tokens
to length 19 (mean + 1std. + ‘start’ + ‘end’). The word embedding layer maps
one-hot encoded word embeddings into a 256 dimensional space. The LSTM
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hidden state is also set to dim 256, and the LSTM units are unrolled up to
19 time steps. We train the model on non-accelerated latent embeddings and
their associated reports by minimising the categorical cross-entropy loss over
the generated words. All models are trained with batch size 128, using Adam
optimisation [8], learning rate=0.0001 for 300 epochs.

Results Inference was performed by first sampling from the LSTM using a
‘start’ token concatenated with the accelerated embeddings, and consequently
appending the output word embedding to the input and sampling until an ‘end’
token was reached. The quality of the generated reports was evaluated by mea-
suring BLUE [12] and ROUGE [9] scores averaged over all the reports, which are
a form of n-gram precision commonly used for evaluating image captioning as
they maintain high correlation with human judgement. We observe that the both
the BLEU and ROUGE scores decrease with increasingly accelerated images, as
expected. We note that there is a significant reduction in performance between
the x4 and x8 accelerated images possibly due to some contextual information
not being captured by the latent space.

We also assess the sampled reports qualitatively in Figure 4. We observe no
major grammatical errors for all accelerations, an no major content errors for
lower accelerations with x2 and x4 correctly identifying the presence/absence of
ischemia as well as the location. Note: the last example shows a text report that
was ischemic but was classified as healthy. This is likely to have confused the
latent code for this example resulting in poor text report generations.

Table 1. BLEU1,2,3,4-gram and ROUGE1 f1, precision (P) and recall (R) metric
comparisons on increasingly accelerated image embeddings.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 F1 ROUGE-1 P ROUGE-1 R

Acc.×1 38.12 27.26 20.28 15.59 47.10 52.89 44.96
Acc.×2 34.07 23.31 15.55 11.57 44.00 51.86 40.68
Acc.×4 31.36 19.42 12.29 8.31 41.17 48.09 38.80
Acc.×8 21.32 10.37 5.06 2.55 29.53 32.92 29.52
Acc.×64 21.58 11.11 4.97 2.35 30.39 35.10 29.07

5 Conclusion and future work

We demonstrate how a latent space capturing pathalogical and spatial informa-
tion can be learned from accelerated brain DWI images and subsequently used
to train a diagnostic report generation network with promising results. In fu-
ture works, we wish to explore radial undersampling trajectories for DWI brain
imaging which are expected to provide improved diagnostic embeddings.
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Acute: Y True report: restricted diffusion right posterior insula several 
additional foci within parietal lobe keeping multiple small right mca infarcts 

Acc x1: tiny foci restricted diffusion within right parietal lobe right 

Acc x2: acute embolic looking infarcts within right parietal lobe 

Acc x4: acute infarcts within right mca territory bilaterally 
Acc x8: tiny acute cortical infarcts right mca territory involving right frontal 
parietal 
Acc x64: several cortical **unknown** infarcts within right parietal lobe 

Acute: Y True report: cortical restricted diffusion centred left parasagittal front

al parietal region involving **unknown** lobule superior 

Acc x1: cortical restricted diffusion centred left parasagittal parietal region inv

olving posterior 

Acc x2: multiple cortical subcortical acute infarcts centred left corona radiata 

Acc x4: cortical subcortical acute ischaemic changes involving left parietal region 

Acc x8: acute cortical infarct centred left parietal region 

Acc x64: several acute infarction within left mca territory 
 

 

Acute: N True report: no acute infarcts demonstrated 

Acc x1: no acute intracranial abnormality identified intracranial haemorrhage 

Acc x2: no acute intracranial abnormality demonstrated particular no acute infarct 

intra extraaxial haemorrhage 

Acc x4: no acute ischaemic changes 
Acc x8: no acute ischaemic lesion intracranial haemorrhage 

Acc x64: no acute infarction intracranial haemorrhage 

Acute: Y True report: small acute white matter infarct left corona radiata 

Acc x1: small area acute infarct left corona radiata 

Acc x2: small area restricted diffusion within left mca territory infarct 

Acc x4: focal area signal within left corona radiata 
Acc x8: multiple small foci acute ischaemia left gyrus 

Acc x64: area restricted diffusion accompanying flair within left corona radiata su

ggest **unknown** 

Acute: N True report: no acute infarction 

Acc x1: no acute ischaemic lesion intracranial haemorrhage 

Acc x2: no acute infarct 

Acc x4: no acute ischaemic lesion 

Acc x8: small acute infarct centred left parietal region 

Acc x64: no acute ischaemic lesion 

Acute: N True report: modest volume acute right middle cerebral artery territory 
ischaemia noted no evidence haemorrhagic transformation 

Acc x1: no evidence acute infarct 

Acc x2: no acute infarct intra extraaxial haemorrhage 

Acc x4: no acute intracranial haemorrhage demonstrated 
Acc x8: acute infarcts within right mca territory areas days 

Acc x64: focal subcortical restricted diffusion within left parietal lobe keeping a

cute infarct 

 
 

Fig. 4. Sample brain slices and associated reports generated from non-accelerated and
increasingly accelerated image embeddings. Correctly identified pathology (acute/non-
acute) and spatial contexts are highlighted in blue.
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