Past radiological exams alongside

expert annotations improve long-

range dependency and generalisation

of image-report generation model

Automated Enriched Medical Concept Generation for Chest X-ray Images

Aydan Gasimova

INTRO

- Past radiological exams have the potential to be used as training data for automated radiology report generation
- Motivation: large quantities of data, expert annotations, contain context to pathology such as **anatomical location** and **severity**
- Challenges: raw reports are noisy, unstructured, contain non visually-

RESULTS

	BLEU-1 Train/Val/Test	BLEU-2 Train/Val/Test	BLEU-3 Train/Val/Test	BLEU-4 Train/Val/Test
earning to Read Chest -rays ¹	97.2 /68.1/ 79.3	67.1 /30.1/9.1	14.9/5.2/0.0	2.8/1.1/0.0
NN1 + resnet50, 1,000 1eSH	92.6/24.3/31.6	55.6/13.2/15.2	37.2 /7.0/7.2	24.0 /4.7/3.5
NN1 + resnet50, ,000 MeSH + TextCNN redictions	73.6/41.5/41.6	50.0/29.7/28.2	30.9/15.9/13.2	17.8/7.2/8.1
NN1 + resnet50, all 1eSH	83.3/ 68.5 /70.1	47.5 /52.1/49.5	30.0/ 29.9/27.2	19.2 /16.9/16.8

DISCUSSION

X-ray image	Report	MeSH
	The heart size and mediastinal contours appear within normal limits. There is blunting of the right lateral costophrenic sulcus which could be secondary to a small effusion versus scarring. No focal airspace consolidation or pneumothorax. No acute bony abnormalities.	Costophrenic Ang right, blunted
	The cardiomediastinal silhouette and pulmonary vasculature are within normal limits. There is no pneumothorax or pleural effusion. There are no focal areas of consolidation. There are calcifications projecting of the left midlung, unchanged from prior, this is is XXXX sequela of prior granulomatous disease. There are small T-spine osteophytes.	Calcinosis, lung, lingual Granulomatous Disease Osteophyte, thora vertebrae, multip small
	Normal cardiomediastinal silhouette. Interval improvement in lung volumes bilaterally. Improved aeration of the right and left lung bases. Bilateral small pleural effusions and left base atelectatic change, with interval improvement. Visualized XXXX of the chest XXXX are within normal limits.	Pleural Effusion, bilateral, small Pulmonary Atelectasis, base,

significant information

PROPOSED SOLUTION

- Train model to extract vocab-controlled key visual concepts from raw reports (Medical Subject Headings, MeSH)
- Use model predictions as augmented 2. dataset for structured report generation
- Train sequence model conditioned on 3. image features for automated key medical concept generation
- Achieves higher BLEU for larger *n*-grams -> maintained better visual correspondence when generating longer sequences of words
- Higher BLEU on val/test than [1] as the model is trained end-to-end (no error propagation caused by cascaded training) -> improved generalisation
- Higher BLEU on val/test than only training on sub-sampled GS annotations -> reduced overfitting

SAMPLE CONCEPT GENERATION

Architecture of Multi-Instance Multi-Label Text Classification for **MeSH** Extraction

Loss:

$$\widehat{SCE}_{i} = -\lambda_{1} \sum_{j=1}^{K} (y_{j} \log(f(s_{ij})) + (1 - y_{j} \log(1 - f(s_{j}))))$$

$$-\lambda_{2} \sum_{j=1}^{K} y_{j} f(s_{j}) / \sum_{j=1}^{K} (y_{j} f(s_{j}) + y_{j} (1 - f(s_{j})))$$

$$-\lambda_{3} \sum_{j=1}^{K} (1 - y_{j}) (1 - f(s_{j})) / \sum_{j=1}^{K} ((1 - y_{j}) (1 - f(s_{j})) + (1 - y_{j}) (f(s_{j})))$$

METHODS

		Pathology	Description	(MeSH)	
	Text	opacity	lung	upper lobe	righ
	CNN	pulmonary	atelectasis	upper lobe	righ
		opacity	lung	lingula	
Raw reports					
		Sequenc	e learning mo	odel	

			multiple		right
	RNN1 + resnet50, 1,000 MeSH + textCNN predictions	cicatrix, lung, lower lobe, left	markings, bronchovascular	granulomatous disease	density, costophrenic angle, right
	RNN1 + resnet50, all MeSH	cicatrix, lung, lower lobe, left	opacity, lung, base, bilateral	normal	density, costophrenic angle, right

[1] Shin, H. C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., & Summers, R. M. (2016). Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2497-2506). [2] https://openi.nlm.nih.gov

Pioneering research and skills

paper

meshl

