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INTRO
• Past radiological exams have the potential 

to be used as training data for automated 
radiology report generation

• Motivation: large quantities of data, expert
annotations, contain context to pathology 
such as anatomical location and severity

• Challenges: raw reports are noisy, 
unstructured, contain non visually-
significant information

PROPOSED SOLUTION
1. Train model to extract vocab-controlled 

key visual concepts from raw reports 
(Medical Subject Headings, MeSH)

2. Use model predictions as augmented 
dataset for structured report generation

3. Train sequence model conditioned on 
image features for automated key 
medical concept generation

METHODS

Title:
Subtitle

Past radiological exams alongside 
expert annotations improve long-
range dependency and generalisation
of image-report generation model

RESULTS

DISCUSSION
• Achieves higher BLEU for larger n-grams        

-> maintained better visual correspondence 
when generating longer sequences of words

• Higher BLEU on val/test than [1] as the
model is trained end-to-end (no error 
propagation caused by cascaded training) -> 
improved generalisation

• Higher BLEU on val/test than only training 
on sub-sampled GS annotations -> reduced 
overfitting
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Architecture for Sequence Model for 
MeSH Generation

LSTM hidden and memory states at time 
step t:

TRAINING AND MODEL DETAILS

Image embedding CNN(I) 
extracted from final spatial avg. 
pooling layer of pre-trained CNN, 
passed through Transition layer 
and combined with output of 
recurrent layer:

Loss:

CHEST X-RAY DATA OPENI2

The heart size and mediastinal contours appear within 
normal limits. There is blunting of the right lateral 
costophrenic sulcus which could be secondary to a 
small effusion versus scarring. No focal airspace 
consolidation or pneumothorax. No acute bony 
abnormalities.

Costophrenic Angle, 
right, blunted

X-ray image Report MeSH

The cardiomediastinal silhouette and pulmonary 
vasculature are within normal limits. There is no 
pneumothorax or pleural effusion. There are no focal 
areas of consolidation. There are calcifications
projecting of the left midlung, unchanged from prior, 
this is is XXXX sequela of prior granulomatous disease. 
There are small T-spine osteophytes.

Calcinosis, lung,          
lingual
Granulomatous 
Disease
Osteophyte, thoracic 
vertebrae, multiple,  
small

Normal cardiomediastinal silhouette. Interval 
improvement in lung volumes bilaterally. Improved 
aeration of the right and left lung bases. Bilateral small 
pleural effusions and left base atelectatic change, with 
interval improvement. Visualized XXXX of the chest 
XXXX are within normal limits.

Pleural Effusion,        
bilateral, small
Pulmonary 
Atelectasis, base, left

code

BLEU-1
Train/Val/Test

BLEU-2
Train/Val/Test

BLEU-3
Train/Val/Test

BLEU-4
Train/Val/Test

Learning to Read Chest 
X-rays1

97.2/68.1/79.3 67.1/30.1/9.1 14.9/5.2/0.0 2.8/1.1/0.0

RNN1 + resnet50, 1,000 
MeSH

92.6/24.3/31.6 55.6/13.2/15.2 37.2/7.0/7.2 24.0/4.7/3.5

RNN1 + resnet50,
1,000 MeSH + TextCNN
predictions

73.6/41.5/41.6 50.0/29.7/28.2 30.9/15.9/13.2 17.8/7.2/8.1

RNN1 + resnet50, all 
MeSH

83.3/68.5/70.1 47.5/52.1/49.5 30.0/29.9/27.2 19.2/16.9/16.8

Gold-standard 
(GS)
MeSH

cicatrix, lung,
lower lobe, left

opacity, lung,
lower lobe, right, 
mild

atherosclerosis, 
aorta

density,
costophrenic 
angle, right

TextCNN
predictions

lower lobe, lung, 
left

opacity, lung, 
right, mild,
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aorta

pulmonary 
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right

RNN1 + resnet50,
1,000 MeSH + 
textCNN
predictions

cicatrix, lung,
lower lobe, left
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bronchovascular

granulomatous 
disease

density,
costophrenic 
angle, right

RNN1 + resnet50, 
all MeSH

cicatrix, lung,
lower lobe, left

opacity, lung, 
base,
bilateral

normal density,
costophrenic 
angle, right
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