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Background
Accurate prediction of lung cancer recurrence risk is crucial for treatment decisions and 
follow-up, particularly for Stage I patients who are not eligible for (neo-)adjuvant therapy 
but approximately one-third of whom still experience recurrence after surgical resection 
[1,2]. We present a machine learning model that uses patient computed tomography 
(CT) images and clinical features to predict lung cancer recurrence.

Methods: Data
A dataset of 968 clinical stage I-III lung cancer patients who underwent surgical resection 
was gathered from the US National Lung Screening Trial [3], the North Estonia Medical 
Centre, the Stanford University School of Medicine and Palo Alto Veterans Affairs 
Healthcare System [4]. Of these patients, 32.3% (313/968) had lung cancer recurrence, 
with Stage I recurrence rate at 28.5% (221/776). 

Table 1. Patient characteristics.

Table 2. Disease-free survival (DFS) and hazard ratios (HR) of high vs low-risk patient 
populations.

Table 3. Time-dependent Area under Receiver Operating Characteristic (AUC) curve of 
staging vs ML model. 
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Machine learning survival model better able to stratify patients 
by risk of lung cancer recurrence than clinical staging alone
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Recurred No recurrence

N 313 (32.3%) 655 (67.7%)

Sex

Male 209 (66.8%) 376 (57.4%)

Female 104 (33.2%) 279 (42.6%)

Age (mean, std) 66.6, 7.3 66.5, 8.4

Nodule size (mean, std) 27.7, 14.6 23.8, 11.9

Clinical Stage

Stage I 221 (70.6%) 555 (84.7%)

Stage II 51 (16.3%) 72 (11.0%)

Stage III 41 (13.1%) 28 (4.3%)

Lobe

Upper 182 (58.1%) 422 (64.4%)

Lower 131 (41.9%) 233 (35.6%)

Attenuation

Solid 241 (77.0%) 455 (69.5%)

Part-solid 62 (19.8%) 143 (21.8%)

GGO 4 (1.3%) 34 (5.2%)

Other 6 (1.9%) 23 (3.5%)

Predictors

1-year 
DFS % 
low-
risk

1-year 
DFS % 
high-
risk

p- 
value

2-year 
DFS % 
low-
risk

2-year 
DFS % 
high-
risk

p- 
value

5-year 
DFS % 
low-
risk

5-year 
DFS 

high-
risk

p- 
value

HR

(5% CI)

Stage I-III

cTNM

92.0 77.1 0.718 85.6 66.7 0.202 74.0 50.8 <0.005
2.2  

(1.7, 2.8) 
p<0.005

Stage I (n=776) vs

Stage II-III (n=192)

ML model 

93.2 72.6 0.767 86.8 61.9 0.003 75.3 46.2 <0.005
2.7  

(2.1, 3.4) 
p<0.005

Low-risk (n=776) vs

High-risk (n=192)

Stage I subgroup

cTNM 

92.2 91.0 0.778 86.1 82.9 0.646 74.4 74.0 0.318
1.1 

(0.7, 1.5) 
p=0.79

Stage IA (n=116) vs

Stage IB (n=660)

ML model

94.0 80.9 0.600 88.0 72.0 0.017 77.4 55.1 <0.005
2.4  

(1.8, 3.3) 
p<0.005

Low-risk (n=116) vs

High-risk (n=660)

Predictor 1-year AUC 2-year AUC 5-year AUC

Stage I-III

cTNM 0.664 0.643 0.608 

ML model 0.742 0.696 0.680 

p-value 0.025 0.065 0.004

Stage I subgroup

cTNM 0.515 0.525 0.502 

ML model 0.670 0.637 0.635 

p-value 0.006 0.011 <0.005

Figure 1. Time-dependent AUC of a) Stage I-III patients and b) Stage I sub-group.

Figure 2. Cumulative incidence of recurrence (CIR) with 5% confidence intervals of all 
Stage I-III patients risk-stratified by a) stage and b) the ML model, and Stage I patients by 
c) stage and d) the ML model. ML model thresholds were set to match on high/low-risk 
patient counts. 
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Results: AUC and CIR

Methods: Training and validation
The pre-operative survival model was trained to predict the likelihood of recurrence at 
each time-point using radiomic features extracted from CT images and relevant clinical 
variables. An 8-fold cross-validation strategy was used, and performance evaluated using 
the time-dependent Area-Under-the-ROC-Curve (AUC), disease-free survival (DFS), 
hazard ratio (HR) and log-rank test against clinical staging. 

Results: Risk Stratification
The ML survival model was better able to stratify patients into high and low-risk (HR=2.7, 
p<0.005) compared with Stage I vs II-III (HR=2.2, p<0.005). The same was observed 
for the Stage I sub-group (HR=2.4, p<0.005) when compared with using Stage IA vs IB 

Conclusions
The ML survival model outperforms clinical staging in patient risk-stratification and time-
dependent lung cancer recurrence prediction. With further development, this algorithm 
could prove a valuable, non-invasive tool to aid the management of lung cancer patients.

Results: Classification Performance
The ML survival model had better prediction accuracy, with the time-dependent AUCs 
being significantly better than staging alone at 1, 2, and 5-year marks.

(HR=1.1, p=0.79). The gaps between the high and low-risk DFS at 1, 2, and 5 years are 
larger for the ML model than separation by staging. ML model thresholds were set to 
match on high/low-risk patient counts.


