North Estonia **Medical Centre**

IMAGING AI PROGNOSIS OF EARLY-STAGE LUNG CANCER USING CT RADIOMICS

Ann Valter¹, Tanel Kordemets², Aydan Gasimova³, Brennen Heames³, Noah Waterfield Price³, Gerald Hodgkinson⁴, Tõnu Vanakesa⁵, Ingemar Almre⁵, Lutz Freitag³, David Paul Carbone⁶, Kersti Oselin¹ ¹Department of Chemotherapy, Clinic of Oncology and Hematology, North Estonia; ²Department of Radiology, Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia; ³Research Department, Optellum, Ltd., Oxford, United Kingdom; ⁴Surgical Robotics, Medtronic - Operational Headquarters, Minneapolis, United States of America; ⁵Cardio-Thoracic Surgery, North Estonia Medical Centre Foundation, Tallinn, Estonia; ⁶Internal Medicine department, Ohio State University Medical Center, Columbus, OH, United States of America

Background

Accurate prediction of lung cancer recurrence risk is crucial for treatment decisions and follow-up, particularly for Stage I patients who are not eligible for (neo-)adjuvant therapy but approximately one-third of whom still experience recurrence after surgical resection [1,2]. We present a machine learning model that uses patient computed tomography (CT) images and clinical features to predict lung cancer recurrence.

Methods: Data

A dataset of 968 clinical stage I-III lung cancer patients who underwent surgical resection was gathered from the US National Lung Screening Trial [3], the North Estonia Medical Centre, the Stanford University School of Medicine and Palo Alto Veterans Affairs Healthcare System [4]. Of these patients, 32.3% (313/968) had lung cancer recurrence, with Stage I recurrence rate at 28.5% (221/776).

Table 1. Patient characteristics.

	Recurred	No recurrence
Ν	313 (32.3%)	655 (67.7%)
Sex		
Male	209 (66.8%)	376 (57.4%)
Female	104 (33.2%)	279 (42.6%)
Age (mean, std)	66.6, 7.3	66.5, 8.4
Nodule size (mean, std)	27.7, 14.6	23.8, 11.9
Clinical Stage		
Stage I	221 (70.6%)	555 (84.7%)
Stage II	51 (16.3%)	72 (11.0%)
Stage III	41 (13.1%)	28 (4.3%)
Lobe		
Upper	182 (58.1%)	422 (64.4%)
Lower	131 (41.9%)	233 (35.6%)
Attenuation		
Solid	241 (77.0%)	455 (69.5%)
Part-solid	62 (19.8%)	143 (21.8%)
GGO	4 (1.3%)	34 (5.2%)
Other	6 (1.9%)	23 (3.5%)

Methods: Training and validation

The pre-operative survival model was trained to predict the likelihood of recurrence at each time-point using radiomic features extracted from CT images and relevant clinical variables. An 8-fold cross-validation strategy was used, and performance evaluated using the time-dependent Area-Under-the-ROC-Curve (AUC), disease-free survival (DFS), hazard ratio (HR) and log-rank test against clinical staging.

Results: Risk Stratification

The ML survival model was better able to stratify patients into high and low-risk (HR=2.7, p<0.005) compared with Stage I vs II-III (HR=2.2, p<0.005). The same was observed for the Stage I sub-group (HR=2.4, p<0.005) when compared with using Stage IA vs IB

The Ohio State University

WEXNER MEDICAL CENTER

Machine learning survival model better able to stratify patients by risk of lung cancer recurrence than clinical staging alone

(HR=1.1, p=0.79). The gaps between the high and low-risk DFS at 1, 2, and 5 years are larger for the ML model than separation by staging. ML model thresholds were set to match on high/low-risk patient counts.

Table 2. Disease-free survival (DFS) and hazard ratios (HR) of high vs low-risk patient populations.

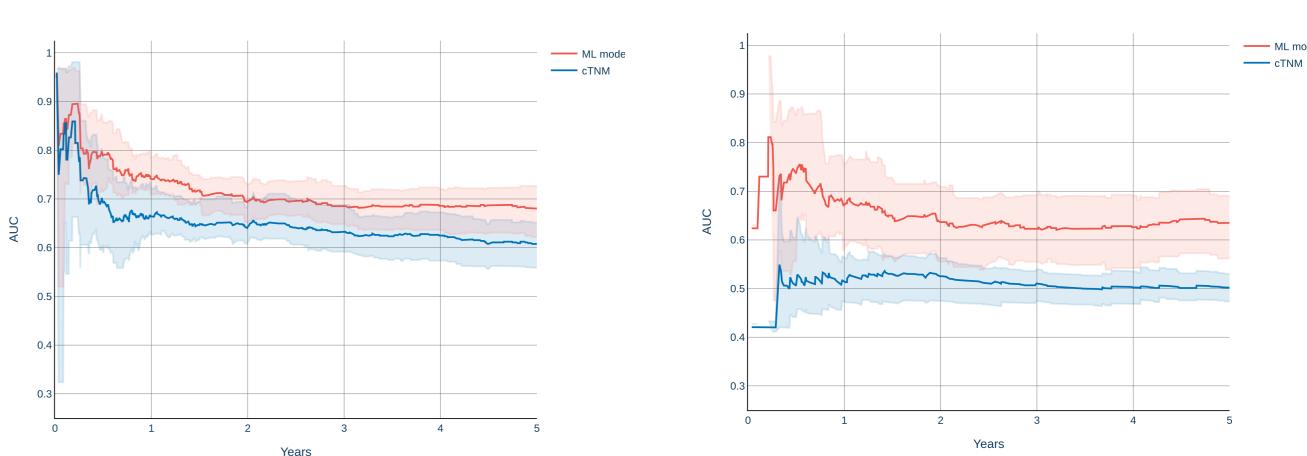
Predictors	1-year DFS % low- risk	1-year DFS % high- risk	<i>p</i> - value	2-year DFS % low- risk	2-year DFS % high- risk	<i>p</i> - value	5-year DFS % low- risk	5-year DFS high- risk	<i>p</i> - value	HR (5% CI)
Stage I-III										
cTNM Stage I (n=776) vs Stage II-III (n=192)	92.0	77.1	0.718	85.6	66.7	0.202	74.0	50.8	<0.005	2.2 (1.7, 2.8) <i>p</i> <0.005
ML model Low-risk (n=776) vs High-risk (n=192)	93.2	72.6	0.767	86.8	61.9	0.003	75.3	46.2	<0.005	2.7 (2.1, 3.4) <i>p</i> <0.005
Stage I subgroup										
cTNM Stage IA (n=116) vs Stage IB (n=660)	92.2	91.0	0.778	86.1	82.9	0.646	74.4	74.0	0.318	1.1 (0.7, 1.5) <i>p</i> =0.79
ML model Low-risk (n=116) vs High-risk (n=660)	94.0	80.9	0.600	88.0	72.0	0.017	77.4	55.1	<0.005	2.4 (1.8, 3.3) <i>p</i> <0.005

Results: Classification Performance

The ML survival model had better prediction accuracy, with the time-dependent AUCs being significantly better than staging alone at 1, 2, and 5-year marks.

Table 3. Time-dependent Area under Receiver Operating Characteristic (AUC) curve of staging vs ML model.

Predictor	1-year AUC	2-year AUC	5-year AUC		
Stage I-III					
cTNM	0.664	0.643	0.608		
ML model	0.742	0.696	0.680		
<i>p</i> -value	0.025	0.065	0.004		
Stage I subgroup					
cTNM	0.515	0.525	0.502		
ML model	0.670	0.637	0.635		
<i>p</i> -value	0.006	0.011	<0.005		



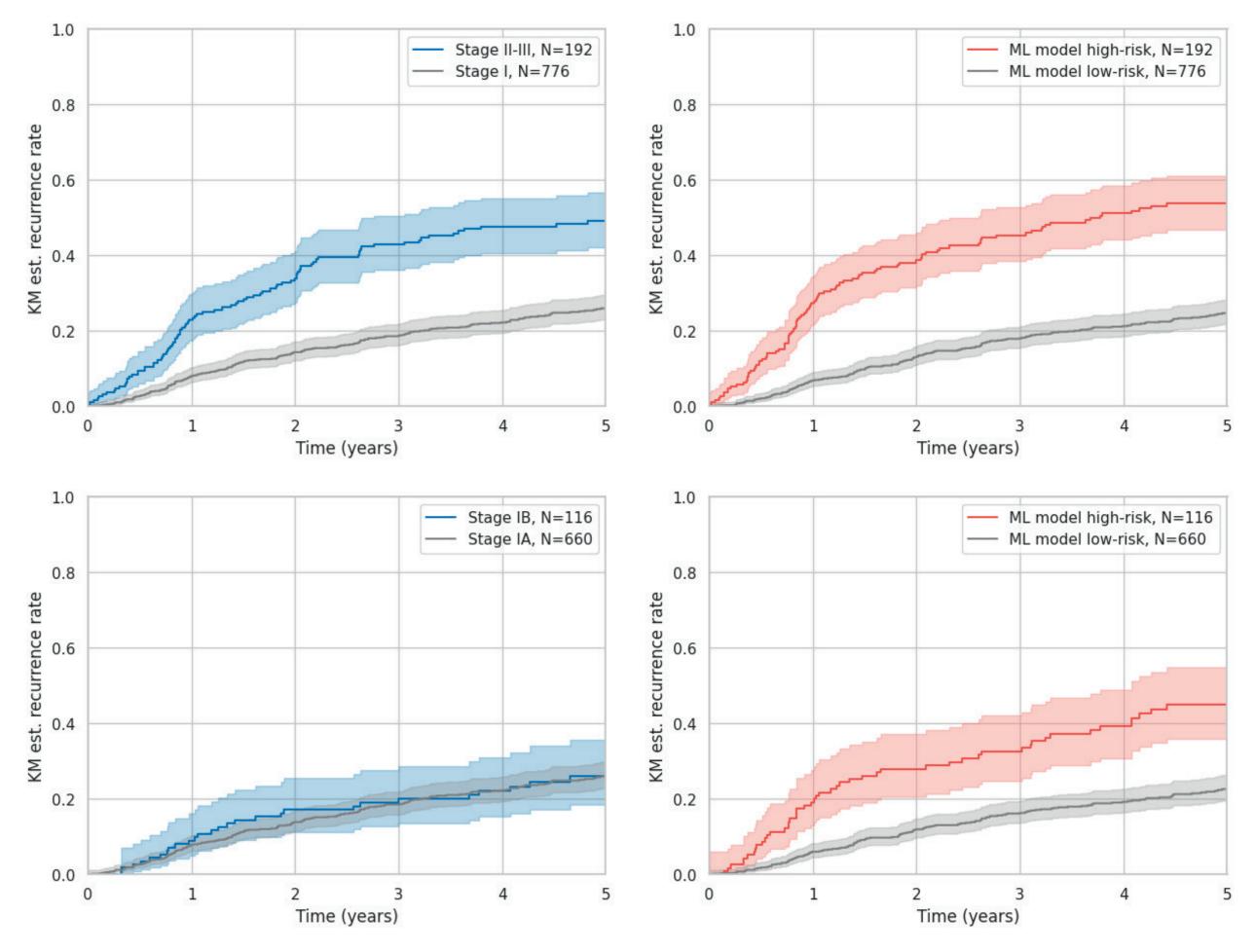


Figure 2. Cumulative incidence of recurrence (CIR) with 5% confidence intervals of all Stage I-III patients risk-stratified by a) stage and b) the ML model, and Stage I patients by c) stage and d) the ML model. ML model thresholds were set to match on high/low-risk patient counts.

The ML survival model outperforms clinical staging in patient risk-stratification and timedependent lung cancer recurrence prediction. With further development, this algorithm could prove a valuable, non-invasive tool to aid the management of lung cancer patients.

REFERENCES

1) Sugimura H et al. Survival after recurrent NSCLC after complete pulmonary resection. Annals of Thoracic Surgery, 2007.

2) Goldstraw P et al. The IASLC lung cancer staging project: proposals for the revision of the TNM classification for lung cancer. Journal of Thoracic Oncology, 2016. 3) The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed

Tomographic screening. NEJM, 2011. 4) Bakr, S. et al. Data for NSCLC Radiogenomics (Version 4) [Data set]. The Cancer Imaging Archive, 2017 Ann Valter declares no conflict of interest with this work.

This study was sponsored by Optellum.

Corresponding author e-mail: ann.valter@regionaalhaigla.ee

Results: AUC and CIR

Figure 1. Time-dependent AUC of a) Stage I-III patients and b) Stage I sub-group.

Conclusions